

 Navigation

 	
 index

 	
 next |

 	GPS 0.1 documentation

GPS

	Guided Policy Search
	Relevant work

	Installation
	Dependencies

	Setup

	Examples
	Box2D example

	Mujoco example

	PR2 example
	1. Start the controller

	2. Run the code

	Running a new experiment

	Documentation

	Learning with your own robot

	Reporting bugs and getting help

	Licensing

	Intended Usage

	GUI Docs
	GPS Training GUI

	Target Setup GUI (for ROS only)

	GUI FAQ

	Configuration & Hyperparameters
	Algorithm and Optimization

	Dynamics

	Cost Function

	Initialization

	Agent Interfaces

	FAQ

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GPS 0.1 documentation

Guided Policy Search

This code is a reimplementation of the guided policy search algorithm and LQG-based trajectory optimization, meant to help others understand, reuse, and build upon existing work.
It includes a complete robot controller and sensor interface for the PR2 robot via ROS, and an interface for simulated agents in Box2D and Mujoco.
Source code is available on GitHub [https://github.com/cbfinn/gps].

While the core functionality is fully implemented and tested, the codebase is a work in progress. See the FAQ for information on planned future additions to the code.

Relevant work

Relevant papers which have used guided policy search include:

	Sergey Levine*, Chelsea Finn*, Trevor Darrell, Pieter Abbeel. End-to-End Training of Deep Visuomotor Policies. 2015. arxiv 1504.00702. [pdf [http://arxiv.org/pdf/1504.00702.pdf]]

	Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, Pieter Abbeel. Learning Deep Neural Network Policies with Continuous Memory States. ICRA 2016. [pdf [http://arxiv.org/pdf/1507.01273.pdf]]

	Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel. Deep Spatial Autoencoders for Visuomotor Learning. ICRA 2016. [pdf [http://arxiv.org/pdf/1509.06113.pdf]]

	Sergey Levine, Nolan Wagener, Pieter Abbeel. Learning Contact-Rich Manipulation Skills with Guided Policy Search. ICRA 2015. [pdf [http://rll.berkeley.edu/icra2015gps/robotgps.pdf]]

	Sergey Levine, Pieter Abbeel. Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics. NIPS 2014. [pdf [http://www.eecs.berkeley.edu/~svlevine/papers/mfcgps.pdf]]

If the codebase is helpful for your research, please cite any relevant paper(s) above and the following:

	Chelsea Finn, Marvin Zhang, Justin Fu, Xin Yu Tan, Zoe McCarthy, Emily Scharff, Sergey Levine. Guided Policy Search Code Implementation. 2016. Software available from rll.berkeley.edu/gps.

For bibtex, see this page.

Installation

Dependencies

The following are required

	python 2.7 [https://www.python.org/download/releases/2.7/], numpy [http://www.numpy.org] (v1.7.0+), matplotlib [http://matplotlib.org] (v1.5.0+), scipy [http://scipy.org] (v0.11.0+)

	boost [http://www.boost.org/], including boost-python

	protobuf [https://developers.google.com/protocol-buffers/] (apt-get packages libprotobuf-dev and protobuf-compiler)

One or more of the following agent interfaces is required. Set up instructions for each are below.

	Box2D [https://github.com/pybox2d/pybox2d]

	ROS [http://ros.org]

	Mujoco [https://www.roboti.us/]

One of the following neural network libraries is required for the full guided policy search algorithm

	Caffe [http://caffe.berkeleyvision.org/] (master branch as of 11/2015, with pycaffe compiled, python layer enabled, PYTHONPATH configured)

	TensorFlow [http://tensorflow.org] (coming soon)

Setup

Follow the following steps to get set up:

	Install necessary dependencies above.

	Clone the repo:

git clone https://github.com/cbfinn/gps.git

	Compile protobuffer:

cd gps
./compile_proto.sh

	Set up one or more agents below.

Box2D Setup (optional)

Here are the instructions for setting up Pybox2D [https://github.com/pybox2d/pybox2d].

	Install Swig and Pygame:

sudo apt-get install build-essential python-dev swig python-pygame subversion

	Check out the Pybox2d code via SVN

svn checkout http://pybox2d.googlecode.com/svn/trunk/ pybox2d

	Build and install the library:

python setup.py build
sudo python setup.py install

Mujoco Setup (optional)

In addition to the dependencies listed above, OpenSceneGraph [http://www.openscenegraph.org/](v3.0.1+) is also needed.

	Install Mujoco [https://www.roboti.us/] (v1.22+) and place the downloaded mjpro directory into gps/src/3rdparty.
Mujoco is a high-quality physics engine and requires requires a license.
Obtain a key, which should be named mjkey.txt, and place the key into the mjpro directory.

	Build gps/src/3rdparty by running:

cd gps/build
cmake ../src/3rdparty
make -j

	Set up paths by adding the following to your ~/.bashrc file:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:gps/build/lib
export PYTHONPATH=$PYTHONPATH:gps/build/lib

Don’t forget to run source ~/.bashrc afterward.

ROS Setup (optional)

	Install ROS [http://ros.org], including the standard PR2 packages [http://wiki.ros.org/Robots/PR2]

	Set up paths by adding the following to your ~/.bashrc file:

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/path/to/gps:/path/to/gps/src/gps_agent_pkg

Don’t forget to run source ~/.bashrc afterward.

	Compilation:

cd src/gps_agent_pkg/
cmake .
make -j

[image: brokenrobot] [image: warning]

ROS Setup with Caffe (optional)

This is required if you intend to run neural network policies with the ROS agent.

	Run step 1 and 2 of the above section.

	Checkout and build caffe, including running make -j && make distribute within caffe.

	Compilation:

cd src/gps_agent_pkg/
cmake . -DUSE_CAFFE=1 -DCAFFE_INCLUDE_PATH=/path/to/caffe/distribute/include -DCAFFE_LIBRARY_PATH=/path/to/caffe/build/lib
make -j

To compile with GPU, also include the option -DUSE_CAFFE_GPU=1.

Examples

Box2D example

There are two examples of running trajectory optimizaiton using a simple 2D agent in Box2D. Before proceeding, be sure to set up Box2D.

Each example starts from a random controller and learns through experience to minimize cost.

The first is a point mass learning to move to goal position.

[image: pm0] [image: pm100]

To try it out, run the following from the gps directory:

python python/gps/gps_main.py box2d_pointmass_example

The progress of the algorithm is displayed on the GUI.
The point mass should start reaching the visualized goal by around the 4th iteration.

The second example is a 2-link arm learning to move to goal state.

[image: box2d0] [image: box2d100]

To try it out, run this:

python python/gps/gps_main.py box2d_arm_example

The arm should start reaching the visualized goal after around 6 iterations.

All settings for these examples are located in experiments/box2d_[name]_example/hyperparams.py,
which can be modified to input different target positions and change various hyperparameters of the algorihtm.

Mujoco example

To run the mujoco example, be sure to first set up Mujoco.

The first example is using trajectory optimizing for peg insertion. To try it, run the following from the gps directory:

python python/gps/gps_main.py mjc_example

Here the robot starts with a random initial controller and learns to insert the peg into the hole.
The progress of the algorithm is displayed on the GUI.

[image: mjc0] [image: mjc99]

Now let’s learn to generalize to different positions of the hole. For this, run the guided policy search algorithm:

python python/gps/gps_main.py mjc_badmm_example

The robot learns a neural network policy for inserting the peg under varying initial conditions.

To tinker with the hyperparameters and input, take a look at experiments/mjc_badmm_example/hyperparams.py.

PR2 example

To run the code on a real or simulated PR2, be sure to first follow the instructions above for ROS setup.

1. Start the controller

Real-world PR2

On the PR2 computer, run:

roslaunch gps_agent_pkg pr2_real.launch

This will stop the default arm controllers and spawn the GPSPR2Plugin.

Simulated PR2

Note: If you are running ROS hydro or later, open the launch file pr2_gazebo_no_controller.launch and change the include line as specified.

Launch gazebo and the GPSPR2Plugin:

roslaunch gps_agent_pkg pr2_gazebo.launch

2. Run the code

Now you’re ready to run the examples via gps_main. This can be done on any machine as long as the ROS environment variables are set appropriately.

The first example starts from a random initial controller and learns to move the gripper to a specified location.

Run the following from the gps directory:

python python/gps/gps_main.py pr2_example

The PR2 should reach the position shown on the right below, and reach a cost of around -600 before the end of 10 iterations.

[image: pr20] [image: pr2end]

The second example trains a neural network policy to reach a goal pose from different starting positions, using guided policy search:

python python/gps/gps_main.py pr2_badmm_example

To learn how to make your own experiment and/or set your own initial and target positions, see the next section

Running a new experiment

	Set up a new experiment directory by running:

python python/gps/gps_main.py my_experiment -n

This will create a new directory called my_experiment/ in the experiments directory, with a blank hyperparams.py file.

	Fill in a hyperparams.py file in your experiment. See pr2_example [https://github.com/cbfinn/gps/blob/master/experiments/pr2_example/hyperparams.py] and mjc_example [https://github.com/cbfinn/gps/blob/master/experiments/mjc_example/hyperparams.py] for examples.

	If you wish to set the initial and/or target positions for the pr2 robot agent, run target setup:

python python/gps/gps_main.py my_experiment -t

See the GUI documentation for details on using the GUI.

	Finally, run your experiment

python python/gps/gps_main.py my_experiment

All of the output logs and data will be routed to your experiment directory. For more details, see intended usage.

Documentation

In addition to the inline docstrings and comments, see the following pages for more detailed documentation:

	Intended Usage

	GUI for visualization and target setup

	Configuration and Hyperparameters

	FAQ

Learning with your own robot

The code was written to be modular, to make it easy to hook up your own robot. To do so, either use one of the existing agent interfaces (e.g. AgentROS), or write your own.

Reporting bugs and getting help

You can post questions on gps-help [https://groups.google.com/forum/#!forum/gps-help]. If you want to contribute,
please post on gps-dev [https://groups.google.com/forum/#!forum/gps-dev]. When your contribution is ready, make a pull request on GitHub [https://github.com/cbfinn/gps].

Licensing

[image: license] This codebase is released under the CC BY-NC-SA [https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode] license.

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GPS 0.1 documentation

Intended Usage

The intended command line usage is through the gps_main.py script:

cd /path/to/gps
python python/gps/gps_main.py -h
usage: gps_main.py [-h] [-n] [-t] [-r N] experiment

Run the Guided Policy Search algorithm.

positional arguments:
 experiment experiment name

optional arguments:
 -h, --help show this help message and exit
 -n, --new create new experiment
 -t, --targetsetup run target setup
 -r N, --resume N resume training from iter N

Usage:

	python python/gps/gps_main.py <EXPERIMENT_NAME> -n

Creates a new experiment folder at experiments/<EXPERIMENT_NAME> with an empty hyperparams file hyperparams.py. Copy and paste your old hyperparams.py from your previous experiment and make any modifications.

	python python/gps/gps_main.py <EXPERIMENT_NAME> -t (for ROS only)

Opens the Target Setup GUI, for target setup when using ROS. See the Target Setup GUI section for details.

	python python/gps/gps_main.py <EXPERIMENT_NAME>

Opens the GPS Training GUI and runs the guided policy search algorithm for your specific experiment hyperparams. See the Training GUI section for details.

	python python/gps/gps_main.py <EXPERIMENT_NAME> -r N

Resumes the guided policy search algorithm, loading the algorithm state from iteration N. (The file experiments/<EXPERIMENT_NAME>/data_files/algorithm_itr_<N>.pkl must exist.)

For your reference, your experiments folder contains the following:

	data_files/ - holds the data files.
	data_files/algorithm_itr_<N>.pkl - the algorithm state at iteration N.

	data_files/traj_samples_itr_<N>.pkl - the trajectory samples collected at iteration N.

	data_files/pol_samples_itr_<N>.pkl - the policy samples collected at iteration N.

	data_files/figure_itr_<N>.png - an image of the GPS Training GUI figure at iteration N.

	hyperparams.py - the hyperparams used for this experiment. For more details, see this page.

	log.txt - the log text of output from the Target Setup GUI and the GPS Training GUI.

	targets.npz - the initial and target state used for this experiment (ROS agent only – set for other agents in hyperparams.py)

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GPS 0.1 documentation

GUI Docs

There are two GUI interfaces which are useful for interacting with and visualizing experiments, documented below.

GPS Training GUI

python python/gps/gps_main.py <EXPERIMENT_NAME>

[image: alt text]

The GPS Training GUI is composed of seven parts:

The Action Panel: Consists of 4 actions which can be performed by clicking the button, pressing the keyboard shortcut, or using the PS3 Controller shortcut:

	stop - stop the robot from collecting samples (after the current sample has completed), used to perform a manual reset of the robot’s arms

	reset - reset the robot to the initial position (after the current sample has completed), used to perform a manual reset of the objects in the scene

	go - start/restart the robot to collect samples (after using stop, reset, or fail), used to resume training after stop, reset or fail

	fail - fail the current sample being collected and recollect that sample (after the current sample has completed), used to recollect a sample that was conducted under faulty conditions

The Action Status TextBox: Indicates whether or not the actions were performed successfully or failed.

The Algorithm Status TextBox: Indicates the current status of the algorithm (sampling, calculating, logging data, etc.).

The Cost Plot: After each iteration, plots the cost per condition (as points) and the mean cost (as a connected line between iterations).

The Algorithm Output Textbox: After each iteration, outputs the iteration number and the mean cost, and for each condition, the cost, the step_multiplier, the linear Gaussian controller entropy, and the initial and final KL Divergences (for BADMM only).
To change what is printed, see the update method of gps_training_gui.py.

The 3D Trajectory Visualizer: After each iteration, plots the trajectory samples collected (green lines), the policy samples collected (blue lines), the linear gaussian controller means (dark red crosses), and the linear gaussian controller distributions (red ellipses).

The Image Visualizer: Displays the real-time images outputted by the PR2’s on-board Kinect. Contains the below two actions:

	overlay_initial_image - overlays the initial image set by the Target Setup GUI (press reset at the end of sampling to reset the robot to the initial position and check if the image matches the initial image set by the Target Setup GUI

	overlay_target_image - overlays the target image set by the Target Setup GUI (press stop at the end of sampling to stop the robot at the target position and check if the image matches the target image set by the Target Setup GUI

Target Setup GUI (for ROS only)

python python/gps/gps_main.py <EXPERIMENT_NAME> -t

[image: alt text]

The Target Setup GUI is composed of four parts:

The Action Panel: Consists of 12 actions which can be performed by clicking the button, pressing the keyboard shortcut, or using the PS3 Controller shortcut:

	prev_target_number - switch to the previous target number (0-9)

	next_target_number - switch to the next target number (0-9)

	next_actuator_type - switch to the next actuator type (TRIAL_ARM, AUXILIARY_ARM)

	set_initial_position - set the initial position (manually move the robot to the desired position and then press set)

	set_target_position - set the target position (manually move the robot to the desired position and then press set)

	set_initial_image - set the initial image (associated with the initial position)

	set_target_image - set the target image (associated with the target position)

	move_to_initial - move to the initial position (queries AgentROS to physically move the robot and lock in place)

	move_to_target - move to the target position (queries AgentROS to physically move the robot and lock in place)

	relax_controller - relaxes the robot controllers, so they can be moved again (after move_to_initial or move_to_target locks them in place)

	mannequin_mode - toggles mannequin mode on or off (for the robot’s arms to stay in place after physically moving them)

The Action Status TextBox: Indicates whether or not the actions were performed successfully or failed.

The Targets TextBox: Displays the target values for the current target number and actuator type, including:

	target number - the current target number

	actuator type - the current actuator type

	initial pose - the initial poses’ joint angles, end effector points, and end effector rotations

	target pose - the target poses’ joint angles, end effector points, and end effector rotations

	initial image - the initial image associated with the initial pose, displayed on the bottom left

	target image - the target image associated with the target pose, displayed on the bottom right

The Image Visualizer: Displays the real-time images outputted by the PR2’s on-board Kinect (defaults to the topic /camera/rgb/image_color). Has options to overlay the initial image and the target image.

GUI FAQ

1. How do I turn off the GPS Training GUI?

At the bottom of the hyperparams.py file, in the config dictionary set gui_on to False.

2. Why is the algorithm output text overflowing?

Matplotlib does not handle drawing text very smoothly. Either decrease the amount of iteration data printed (see the update function of gps_training_gui.py), the size at which is printed (see the fontsize parameter in the initialization of the self._algthm_output OutputAxis in gps_trainin_gui.py), or increase your window size.

3. How do I change the experiment information displayed at the start of learning?

See what algorithm information is printed in the info key of the common dictionary in hyperparams.py.

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GPS 0.1 documentation

Configuration & Hyperparameters

All of the configuration settings are stored in a config.py file in the relevant code directory. All hyperparameters can be changed from the default value in the hyperparams.py file for a particular experiment.

This page contains all of the config settings that are exposed via the experiment hyperparams file. See the corresponding config files for more detailed comments on each variable.

Algorithm and Optimization

Algorithm base class

	initial_state_var

	sample_decrease_var

	kl_step

	init_traj_distr

	sample_increase_var

	cost

	inner_iterations

	dynamics

	min_step_mult

	min_eta

	max_step_mult

	traj_opt

BADMM Algorithm

	fixed_lg_step

	exp_step_decrease

	init_pol_wt

	max_policy_samples

	policy_dual_rate

	inner_iterations

	exp_step_lower

	exp_step_increase

	policy_sample_mode

	exp_step_upper

	lg_step_schedule

	policy_dual_rate_covar

	ent_reg_schedule

LQR Traj Opt

	del0

	eta_error_threshold

	min_eta

Caffe Policy Optimization

	gpu_id

	batch_size

	iterations

	weights_file_prefix

	weight_decay

	init_var

	use_gpu

	ent_reg

	lr

	network_model

	network_arch_params

	lr_policy

	momentum

	solver_type

Policy Prior & GMM

	strength

	keep_samples

	max_clusters

	strength

	min_samples_per_cluster

	max_samples

Dynamics

Dynamics GMM Prior

	max_clusters

	strength

	min_samples_per_cluster

	max_samples

Cost Function

State cost

	wp_final_multiplier

	ramp_option

	l2

	data_types

	l1

	alpha

Forward kinematics cost

	evalnorm

	wp_final_multiplier

	alpha

	target_end_effector

	l2

	ramp_option

	env_target

	wp

	l1

Action cost

	wu

Sum of costs

	costs

	weights

Initialization

Initial Trajectory Distribution - PD initializer

	init_action_offset

	pos_gains

	init_var

	vel_gains_mult

Initial Trajectory Distribution - LQR initializer

	init_acc

	stiffness

	init_gains

	init_var

	stiffness_vel

	final_weight

Agent Interfaces

Agent base class

	noisy_body_var

	x0var

	dH

	noisy_body_idx

	smooth_noise_renormalize

	smooth_noise

	smooth_noise_var

	pos_body_offset

	pos_body_idx

Box2D agent

Mujoco agent

	substeps

ROS agent

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	GPS 0.1 documentation

FAQ

What does this codebase include?

This codebase implements the BADMM-based guided policy search algorithm, including LQG-based trajectory optimization, fitting
local dynamics model using a Gaussian Mixture Model prior, and the cost functions used our work.

For ease of applying the method, we also provide interfaces with three simulation and robotic platforms: Box2D for its ease of access,
Mujoco for its more accurate and capable 3D physics simulation, and ROS for interfacing with real-world robots.

What does this codebase not include?

The codebase is a work in progress.

It includes the algorithm detailed in (Levine, Finn et al., 2015 [http://arxiv.org/pdf/1504.00702.pdf]) but does not yet include support for images and convolutional networks, which is under development.

It does not include the constrained guided policy search algorithm in (Levine et al., 2015 [http://rll.berkeley.edu/icra2015gps/robotgps.pdf]; Levine and Abbeel, 2014 [http://www.eecs.berkeley.edu/~svlevine/papers/mfcgps.pdf]). For a discussion on the
differences between the BADMM and constrained versions of the algorithm, see (Levine, Finn et al. 2015 [http://arxiv.org/pdf/1504.00702.pdf]).

Other extensions on the algorithm, including (Finn et al., 2016 [http://arxiv.org/pdf/1509.06113.pdf]; Zhang et al., 2016 [http://arxiv.org/pdf/1507.01273.pdf]; Fu et al., 2015 [http://arxiv.org/pdf/1509.06841.pdf]) are not currently implemented, but the former
two extensions are in progress.

Why Caffe?

Caffe provides a straight-forward interface in python that makes it easy to define, train, and deploy simple architectures.

We plan to add support for TensorFlow to enable training more flexible network architectures.

How can I find more details on the algorithms implemented in this codebase?

For the most complete, up-to-date reference, we recommend this paper:

Sergey Levine*, Chelsea Finn*, Trevor Darrell, Pieter Abbeel. End-to-End Training of Deep Visuomotor Policies. 2015. arxiv 1504.00702. [pdf [http://arxiv.org/pdf/1504.00702.pdf]]

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	GPS 0.1 documentation

Index

 Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

 _images/target_setup_gui.png
rear i

rear g1,

rear i

cross ght)

set il posiion: compleed

intial posiion =
ot anges

(00010001 0231 0.484-0152-0835-0. 1]

e afectorpostions =
{083 0282 03091
e etecto roatons
{0253 0063-05651
{0328 0332 0353)
1631035 0213

overay_arget mage.

_static/plus.png

_images/pointmass0.png

_images/brokenrobot.png

_static/down-pressed.png

_images/gps_training_gui.png

_static/comment.png

_images/pointmass100.png

_images/mjc0.png

_images/gazebo_end.png

_images/box2d0.png

_images/warning.png
WARNING - Our controller directly commands torques on the.
PR2 robot with no safety measures. Closely supervise the
robot at alltimes, especially when running code for the first time.

_images/gazebo_start.png

search.html

 Navigation

 		
 index

 		GPS 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

_images/cclicense.png

_images/box2d100.png

_static/up-pressed.png

_static/comment-bright.png

_images/mjc99.png

bibtex.html

 Navigation

 		
 index

 		GPS 0.1 documentation »

References

Relevant papers which have used guided policy search include:

Sergey Levine*, Chelsea Finn*, Trevor Darrell, Pieter Abbeel. End-to-End Training of Deep Visuomotor Policies. 2015. arxiv 1504.00702. [pdf [http://arxiv.org/pdf/1504.00702.pdf]]

@article{lfda-e2e-15,
 author = {S. Levine and C. Finn and T. Darrell and P. Abbeel}
 title = {End-to-End Training of Deep Visuomotor Policies},
 journal = {arXiv preprint arXiv:1504.00702},
 year = {2015},
}

Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, Pieter Abbeel. Learning Deep Neural Network Policies with Continuous Memory States. ICRA 2016. [pdf [http://arxiv.org/pdf/1507.01273.pdf]]

@inproceedings{zmfla-cms-16,
 author = {M. Zhang and Z. McCarthy and C. Finn and S. Levine and P. Abbeel},
 title = {Learning Deep Neural Network Policies with Continuous Memory States},
 booktitle = {International Conference on Robotics and Automation (ICRA)},
 year = {2016}
}

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel. Deep Spatial Autoencoders for Visuomotor Learning. ICRA 2016. [pdf [http://arxiv.org/pdf/1509.06113.pdf]]

@inproceedings{ftddla-dsae-15,
 author = {C. Finn and X. Tan and Y. Duan and T. Darrell and S. Levine and P. Abbeel},
 title = {Deep Spatial Autoencoders for Visuomotor Learning},
 booktitle = {International Conference on Robotics and Automation (ICRA)},
 year = {2016}
}

Sergey Levine, Nolan Wagener, Pieter Abbeel. Learning Contact-Rich Manipulation Skills with Guided Policy Search. ICRA 2015. [pdf [http://rll.berkeley.edu/icra2015gps/robotgps.pdf]]

@inproceedings{lwa-crmgps-15,
 author = {S. Levine and N. Wagener and P. Abbeel},
 title = {Learning Contact-Rich Manipulation Skills with Guided Policy Search},
 booktitle = {International Conference on Robotics and Automation (ICRA)},
 year = {2015},
}

Sergey Levine, Pieter Abbeel. Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics. NIPS 2014. [pdf [http://www.eecs.berkeley.edu/~svlevine/papers/mfcgps.pdf]]

@inproceedings{la-lnnpg-14,
 author = {S. Levine and P. Abbeel},
 title = {Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics},
 booktitle = {Advances in Neural Information Processing Systems (NIPS)},
 year = {2014},
}

If the codebase is helpful for your research, please cite any relevant paper(s) above and the following:
Chelsea Finn, Marvin Zhang, Justin Fu, Xin Yu Tan, Zoe McCarthy, Emily Scharff, Sergey Levine. Guided Policy Search Code Implementation. 2016. Software available from rll.berkeley.edu/gps.

@misc{fzftm-gpsi-16,
 author = {C. Finn and M. Zhang and J. Fu and X. Tan and Z. McCarthy and E. Scharff and S. Levine},
 title = {Guided Policy Search Code Implementation},
 url = {http://rll.berkeley.edu/gps},
 note = {Software available from rll.berkeley.edu/gps},
 year = {2016},

 © Copyright 2015, Chelsea Finn, Marvin Zhang, Justin Fu, Zoe McCarthy, Xin Yu Tan, Emily Scharff, Sergey Levine.
 Created using Sphinx 1.3.4.

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

